Duality and Geometry in SVM Classifiers
نویسندگان
چکیده
We develop an intuitive geometric interpretation of the standard support vector machine (SVM) for classification of both linearly separable and inseparable data and provide a rigorous derivation of the concepts behind the geometry. For the separable case finding the maximum margin between the two sets is equivalent to finding the closest points in the smallest convex sets that contain each class (the convex hulls). We now extend this argument to the inseparable case by using a reduced convex hull reduced away from outliers. We prove that solving the reduced convex hull formulation is exactly equivalent to solving the standard inseparable SVM for appropriate choices of parameters. Some additional advantages of the new formulation are that the effect of the choice of parameters becomes geometrically clear and that the formulation may be solved by fast nearest point algorithms. By changing norms these arguments hold for both the standard 2-norm and 1-norm SVM.
منابع مشابه
Support Vector Machine Classifiers with Uncertain Knowledge Sets via Robust Optimization
In this paper we study Support Vector Machine(SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior knowled...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملOptimization : A Journal of Mathematical Programming and Operations Research
In this article we study support vector machine (SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior know...
متن کاملتشخیص عابر پیاده با استفاده از کلاس بندهای SVM و هیستوگرام در توالی تصاویر مادون قرمز
Abstract In dark environments and foggy or smoky conditions where it is not possible to use eyesight and usual binoculars to detect human from other objects, the best solution is to use infrared images. This paper presents a robust method to recognize pedestrians in infrared image sequences. For this purpose, combination of SVM and histogram classifiers has been used. A pre-processing phase ext...
متن کاملLarge Margin Discriminant Dimensionality Reduction in Prediction Space
In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a pre-defined mapping (induced by the kernel)...
متن کامل